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Abstract. Existing methods for evaluating the performance of head trackers usually rely on publicly available
face databases, which contain facial images and the ground truths of their corresponding head orientations.
However, most of the existing publicly available face databases are constructed by assuming that a frontal
head orientation can be determined by compelling the person under examination to look straight ahead at
the camera on the first video frame. Since nobody can accurately direct one’s head toward the camera, this
assumption may be unrealistic. Rather than obtaining estimation errors, we present a method for computing
the covariance of estimation error rotations to evaluate the reliability of head trackers. As an uncertainty measure
of estimators, the Schatten 2-norm of a square root of error covariance (or the algebraic average of relative
error angles) can be used. The merit of the proposed method is that it does not disturb the person under exami-
nation by asking him to direct his head toward certain directions. Experimental results using real data validate
the usefulness of our method. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.OE.56.10.103105]
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1 Introduction
The performance of head orientation tracking algorithms
(i.e., head trackers) with cameras is commonly evaluated
by using publicly available face databases.1–3 This is because
face databases contain the information about the ground
truths of head orientations as well as facial images. To collect
the ground truths of head orientations, a checkerboard or an
optical motion capture system is usually used. When attach-
ing a checkerboard (or reflective markers) to a person’s head,
one may find that it is unavoidable to have a rotational
mismatch between the head frame fEg in Fig. 1(a) and
the checkerboard frame (or reflective marker frame) fAg in
Fig. 1(b).

To resolve the issue of this rotational mismatch, existing
publicly available face databases mostly assume that a fron-
tal head orientation can be determined by compelling the per-
son under examination to look straight ahead at the camera
on the first video frame.4–9 Since nobody can accurately
direct one’s head toward the camera, this assumption may
be unrealistic. To correctly evaluate the performance of
head trackers, this assumption should be discarded. In con-
trast, the ground truth positions of an eye as a particular point
on the head can be obtained without the above assumption by
using a recent method.10

Rather than obtaining estimation error angles by directly
comparing the outputs of head trackers with their corre-
sponding ground truths, one may consider computing the
“error covariance” to evaluate the performance of head track-
ers in terms of estimation “uncertainty.”11–13 Unfortunately,
most of the existing methods for computing the error covari-
ance also assume that the relative rotation between the head
frame fEg and the pattern frame fAg in Fig. 1 is given, but it
is actually unknown. As we point out at the above paragraph,
this assumption is unrealistic and should be removed. In this

paper, we present a method for evaluating the uncertainty of
head trackers by computing the covariance of error rotations
without compelling the person under examination to look
straight ahead in order to set the frontal head orientation.
If the Schatten 2-norm of a square root of error covariance
(or the algebraic average of relative error angles) is used as
an uncertainty measure of estimators, then a smaller value of
this norm is preferable as a reliable estimator.

The remainder of this paper is organized as follows. In
Sec. 2, we establish some notation and provide mathematical
preliminaries. The problem statement is given in Sec. 3. In
Sec. 4, we present a method for computing the covariance of
estimation errors and two measures for evaluating the uncer-
tainty of estimators. Experimental results using real data sets
are presented in Sec. 5 to demonstrate the usefulness of the
proposed method.

2 Mathematical Preliminaries
We first establish some notations and provide useful equa-
tions involving the rotation group, denoted SOð3Þ.14,15
SOð3Þ is an example of matrix Lie group and consists of
3 × 3 orthogonal matrices with determinant 1. The Lie
algebra of SOð3Þ, denoted soð3Þ, is the set of 3 × 3 skew-
symmetric matrices of the form

EQ-TARGET;temp:intralink-;sec2;326;221½r� :¼
2
4 0 −r3 r2

r3 0 −r1
−r2 r1 0

3
5;

where r ¼ ðr1; r2; r3ÞT ∈ R3. In this paper, we use the square
bracket ½r� ∈ soð3Þ to denote the skew-symmetric matrix
representation of a vector r.

The exponential mapping exp ∶soð3Þ → SOð3Þ is given
by the following explicit equation. Given ½ω� ∈ soð3Þ
EQ-TARGET;temp:intralink-;sec2;326;114 exp½ω� ¼ I3 þ a½ω� þ b½ω�2 ∈ SOð3Þ;
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where I3 is the 3 × 3 identity matrix, a ¼ ðsin kωkÞ∕kωk,
and b ¼ ð1 − cos kωkÞ∕kωk2. The inverse of the exponen-
tial map or logarithm can also be expressed as follows.
Suppose R ∈ SOð3Þ such that trðRÞ ≠ −1, where trð·Þ
denotes the trace of a matrix. Thus

EQ-TARGET;temp:intralink-;sec2;63;697 log R ¼ θ

2 sin θ
ðR − RTÞ;

where θ satisfies 1þ 2 cos θ ¼ trðθÞ, jθj < π, and
k logRk∕ ffiffiffi

2
p ¼ θ. Here, k · k denotes the Frobenius norm.

If trðRÞ ¼ −1, then the logarithm ½r�∶ ¼ log R has two
antipodal solutions �r, which can be determined from the
relation R ¼ I3 þ ð2∕π2Þ½r�2.

3 Problem Statement
In this paper, we will call the frame fixed to a head as
the “head frame.” Let Gk ∈ SOð3Þ denote the estimate of
head orientation at time instant k provided by a certain
head orientation tracker as depicted in Fig. 1(a). Since
every head tracker defines its own frame fEg fixed to a par-
ticular point on the head, Gk represents the estimated orien-
tation of the head frame fEgwith respect to the camera frame
fCg, which can be compactly rewritten as Gk∶fCg → fEg
[see Fig. 1(a)].

To evaluate the performance of head trackers, we need
the accurate information about head orientations, which is
commonly called as the “ground-truths” of head orientations.
Let Gk ∈ SOð3Þ∶fCg → fEg be the ground-truth of Gk at
time instant k. The error of Gk, denoted δGk ∈ SOð3Þ, can
be defined as

EQ-TARGET;temp:intralink-;e001;63;414δGk :¼ G−1
k Gk: (1)

Thus, the goal of this paper is to approximate the covariance
of error rotations fδG1; : : : ; δGNg, denoted P, where N is
the number of measurements.

4 Method

4.1 Ground-Truths of Head Orientations

To obtain Gk at time step k, one may consider using
a checkerboard pattern as shown in Fig. 1(b). Using a
standard method16 for camera calibration, we can obtain
Dk ∈ SOð3Þ∶fCg → fAg. From Fig. 1(b), Gk can be given
by

EQ-TARGET;temp:intralink-;e002;63;250Gk ¼ DkW; ðk ¼ 1; : : : ; NÞ; (2)

where W ∈ SOð3Þ∶fAg → fEg is an unknown and “con-
stant” transformation.

4.2 Covariance of Estimation Errors

By substituting Eq. (2) into Eq. (1), we have

EQ-TARGET;temp:intralink-;e003;326;555δGk :¼ BkW; (3)

where Bk :¼ G−1
k Dk ∈ SOð3Þ. Let B̄ ∈ SOð3Þ denote the

average rotation matrix of B1; : : : ;BN . Using Algorithm 1,17

B̄ can be obtained. Since Algorithm 1 converges rapidly,18

it is enough to set M ¼ 4. Thus, Bk can be modeled as

EQ-TARGET;temp:intralink-;e004;326;480Bk ¼ exp½ξk�B̄; (4)

where ½ξk� ∈ soð3Þ. Given Bk and B̄, we can compute ξk by

EQ-TARGET;temp:intralink-;e005;326;437½ξk� ¼ logðBkB̄−1Þ: (5)

When substituting Eq. (4) into Eq. (3), we can obtain

EQ-TARGET;temp:intralink-;sec4.2;326;395δGk ¼ exp½ξk�B̄W:

SinceW is constant, the average of δG1; : : : ; δGN is B̄W. By
combining the ideas of recent works,19,20 the “covariance” of
error rotations δG1; : : : ; δGN can be approximated by

EQ-TARGET;temp:intralink-;e006;326;329P ¼ 1

N

XN
k¼1

ξkξ
T
k : (6)

Let the singular value decomposition (SVD) be given by
P ¼ USUT, where U is an orthogonal matrix and S is a
diagonal matrix. Thus, the square root of P is given byffiffiffi
P

p ¼ U
ffiffiffi
S

p
UT. If the singular values of

ffiffiffi
P

p
are denoted

by r1; r2; r3 > 0, then one may use

EQ-TARGET;temp:intralink-;e007;326;226ϵ :¼
�X3

m¼1

r2m

�1∕2

; (7)

as an uncertainty measure of estimators. In mathematics, ϵ in
Eq. (7) is called the Schatten 2-norm of

ffiffiffi
P

p
. In this paper, we

choose the Schatten 2-norm of
ffiffiffi
P

p
as an uncertainty measure

of estimators because its physical meaning can be intuitively
understood as follows. The Schatten 2-norm of

ffiffiffi
P

p
is the

square root of the sum of lengths squared in the direction of
the principal axes of the error ellipsoid. Recall that the value
of the Frobenius norm is equal to that of the Schatten 2-norm
(see Appendix A). As an alternative uncertainty measure of
estimators, one can use

Fig. 1 System setups for collecting head orientations. (a) Original
system and (b) using a checkerboard.

Algorithm 1 Rotation averaging.

Input: a set of rotation matrices fB1; : : : ;BNg

T←B1

for k←0 to M do

Λ← 1
N

PN
k¼1 logðBkT−1Þ

T←expðΛÞT

end

return T
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EQ-TARGET;temp:intralink-;e008;63;570γ :¼ 1

N

XN
k¼1

kξkk: (8)

As ϵ (or γ) becomes large, the uncertainty of an estimator
also increases. For this reason, a smaller ϵ (or γ) is preferable
as a reliable estimator.

5 Experimental Results
We perform real experiments for evaluating the perfor-
mances of two different head tracker systems by using the
proposed method.

• In the first experiment, we evaluate the performance
of a head tracker system consisting of the Intel
RealSense™ F200 RGB-D (red, green, blue, and depth)
camera and Intel RealSense™ Software Development
Kit (SDK), version 2015 R5.

• The second experiment is conducted for evaluating the
performance of a more recent version of the head
tracker system, which includes Intel RealSense™

SR300 RGB-D camera and Intel RealSense™ SDK,
2016 R2.

5.1 First Experiment by Using the Intel RealSense™

F200 RGB-D Camera and the SDK 2015 R5

5.1.1 Norms of noises

To emulate a person’s face in Fig. 1(b), we use a mockup
face. As shown in Fig. 2, we attach a 7 × 7 checkerboard

to the mockup face, of which checker square is of dimension
40 mm × 40 mm.

While keeping a mockup face stationary for a moment
at the k 0th experiment, we can collect a set of data
fHð1Þ

k ; : : : ;HðNtÞ
k g ⊂ SOð3Þ, which is provided by the head

tracker system. In each experiment, Nt ¼ 30. In this situa-
tion, the infrared camera in the Intel RealSense™ F200
RGB-D camera fixed to the ground captures the image of
the checkerboard attached to the mockup face as shown
in Fig. 2. Let Dk, depicted in Fig. 1(b), be the average of
rotation matrices fHð1Þ

k ; : : : ;HðNtÞ
k g, which can be obtained

by using Algorithm 1. In a similar fashion to Eq. (4), we
can model HðjÞ

k ;ðj¼1; : : : ;NtÞ as HðjÞ
k ¼ exp½ηðjÞk �Dk, where

ηðjÞk denotes the noise vector at the time step j in the k 0th
experiment. Using the equation, ½ηðjÞk � ¼ log½HðjÞ

k D−1
k � ∈

soð3Þ, we can obtain ηðjÞk . In a similar way to Eqs. (6)
and (7), fk ∈ R at the k 0th experiment can be defined by

EQ-TARGET;temp:intralink-;e009;326;545fk :¼
180 deg

π

�X3
m¼1

u2m

�1∕2

; (9)

where u1; u2; u3 > 0 are the singular values of
ffiffiffiffiffiffi
Qk

p
. Here,

Qk ¼
PNt

j¼1 η
ðjÞ
k ηðjÞT

k represents the noise covariance at the
k 0th experiment. The physical meaning of Eq. (9) is that
fk is the norm of noise at the k 0th experiment, which is rep-
resented in degrees. As an alternative measure of estimation
noises, we can use Eq. (8) by defining

EQ-TARGET;temp:intralink-;e010;326;426gk :¼
180 deg

π

1

Nt

XNt

j¼1

kηðjÞ
k k: (10)

By changing the orientations of the mockup face, we perform
the same experiment N ¼ 50 times. Figures 3(a) and 3(b)
show the norms of noises, fk and gk ðk ¼ 1; : : : ; NÞ
described in Eqs. (9) and (10), respectively. The horizontal
axes in Fig. 3 represent the index of experiments k. Since fk
is close to gk, one may choose fk or gk as a norm of estima-
tion noises.

5.1.2 Analysis of error covariance

From Eq. (5), we can now compute ξk, ðk ¼ 1; : : : ; NÞ.
Figure 3(c) shows the relative angular error

Fig. 2 Images of a mockup face and a checkerboard captured by
an infrared camera in the Intel RealSense™ F200.

Fig. 3 Experimental results by using the Intel RealSense™ F200 RGB-D camera and the SDK 2015 R5.
(a) and (b) Norm of noise and (c) relative angular error.
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EQ-TARGET;temp:intralink-;e011;63;646hk :¼
180 deg

π
kξkk; (11)

which is represented in degrees. Recall that kξkk is not
the estimation error (i.e., kξkk ≠ kδGkk) but represents the
relative angular error with respect to the average of error
rotations. As derived in Eq. (6), we can compute the error
covariance P from ξk, ðk ¼ 1; : : : ; NÞ.

Table 1 presents the value of hk at k ¼ 1, 9, 20, 22, 36,
and 47. The images of the mockup face corresponding to
Table 1 are shown in Fig. 2. From Eqs. (7) and (8), we can
obtain 180 deg

π ϵ ¼ 5.17 deg and 180 deg
π γ ¼ 5.62 deg. As a

measure of the uncertainty of estimators, we can choose
one from 180 deg

π ϵ or 180 deg
π γ.

5.2 Second Experiment by Using the Intel
RealSense™ SR300 RGB-D Camera and
the SDK 2016 R2

By following exactly the same procedure as described in the
previous section, we can evaluate the performance of another
head tracker system, which is composed of the SR300 cam-
era and the SDK 2016 R2. Figure 4 shows the performance
of this head tracker. Table 2 demonstrates that the perfor-
mance of the head tracker consisting of the SR300 camera
and the SDK 2016 R2 is superior to that of their outdated
predecessors, i.e., F200 camera and the SDK 2015 R5 in
terms of reliability.

Since the proposed method does not compel the person
under examination to direct his head toward certain direc-
tions, it may be useful when evaluating the reliability of
various head trackers.

6 Conclusion
In this paper, a method for evaluating the performance of
head orientation trackers by computing the error covariance
has been presented. The Schatten 2-norm of a square root
of error covariance (or the algebraic average of relative
error angles) has been computed as an uncertainty measure
of estimators. The merit of the proposed method is that
it does not disturb the person under examination by
asking him to direct his head toward certain directions.
Experimental results using real data have validated the
usefulness of our method.

Appendix A: Frobenius Norm and Schatten
2-Norm
The Frobenius norm of a matrix A ∈ Rm×n is defined
as kAkF :¼ ðPm

i¼1

P
n
j¼1 jaijj2Þ1∕2, where aij denotes the

i; j entry of A. It is well known that the value of the
Frobenius norm is equal to that of the Schatten 2-norm.
This can be proved as follows.21

Proposition 1. Suppose the rank of a matrix A ∈ Rm×n is
r. Then, kAkF ¼ ðPr

m¼1 s
2
mÞ1∕2, where s1; : : : ; sr denote the

singular values of A.

Proof. Let the SVD of A be given by ŨΣṼT, where
Ũ; Ṽ are orthogonal matrices and Σ is a diagonal matrix.

Fig. 4 Experimental results by using the Intel RealSense™ SR300 RGB-D camera and the SDK 2016 R2.
(a) and (b) Norm of noise and (c) relative angular error.

Table 2 Comparison of the performances of two different head
tracker systems.

Head tracker systems

The algebraic average
of norms of noises

The measure of
the uncertainty
of estimators

1
N

PN
k¼1 f k

1
N

PN
k¼1 gk

180 deg
π ϵ 180 deg

π γ

F200 camera,
SDK 2015 R5 (deg)

0.54 0.53 5.17 5.62

SR300 camera,
SDK 2016 R2 (deg)

0.11 0.11 4.52 4.84

Table 1 The relative angular error of the head tracker system
(Intel RealSense™ F200 camera and the SDK 2015 R5) at the k 0th
measurement.

k ¼ 1 k ¼ 9 k ¼ 20 k ¼ 22 k ¼ 36 k ¼ 47

hk (deg) 2.97 8.48 6.32 10.17 2.81 6.85
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Thus, kAkF ¼ ½trðATAÞ�1∕2 ¼ ½trðṼΣTΣṼTÞ�1∕2. Using the
matrix trace identity trðCDEÞ ¼ trðECDÞ ¼ trðDECÞ, we
have ½trðṼΣTΣṼTÞ�1∕2 ¼ ½trðṼTṼΣTΣÞ�1∕2 ¼ ½trðΣTΣÞ�1∕2 ¼
½Pr

m¼1 s
2
m�1∕2. Hence, kAkF ¼ ðPr

m¼1 s
2
mÞ1∕2. ▯
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